
LBNL-42384

Automatic Calibration of Geothermal Reservoir Models
Through Parallel Computing on a Workstation Cluster

Stefan Finsterle and Karsten Pruess

Earth Sciences Division

Lawrence Berkeley National Laboratory

University of California

Berkeley, CA 94720

Paper presented at the

Twenty-Fourth Workshop on Geothermal Reservoir Engineering

Stanford University, Stanford, California

January 25–27, 1999,

and to be published in the Proceedings

January 1999

This work was supported, in part, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of
Geothermal Technologies, of the U.S. Department of Energy under contract No. DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. While this document is believed to contain
correct information, neither the United States Government nor any
agency thereof, nor The Regents of the University of California, nor
any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof, or
The Regents of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof, or The Regents of the
University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal
opportunity employer.

PROCEEDINGS, Twenty-Fourth Workshop on Geothermal Reservoir Engineering
Stanford University, Stanford, California, January 25-27, 1999
SGP-TR-162

AUTOMATIC CALIBRATION OF GEOTHERMAL RESERVOIR MODELS
THROUGH PARALLEL COMPUTING ON A WORKSTATION CLUSTER

Stefan Finsterle and Karsten Pruess

Lawrence Berkeley National Laboratory
Earth Sciences Division
University of California

Berkeley, CA 94720

ABSTRACT

ITOUGH2 is an optimization code that allows esti-
mation of any input parameter of the nonisothermal,
multiphase flow simulator TOUGH2. ITOUGH2
inversions are computationally intensive because the
so-called forward problem, i.e., the simulation of
fluid and heat flow through the geologic formation,
must be solved many times for different parameter
combinations to evaluate the misfit criterion or to
numerically calculate sensitivity coefficients. Most
of these forward runs are independent from each other
and can therefore be performed in parallel. Message
passing based on the Parallel Virtual Machine (PVM)
system has been implemented into ITOUGH2 to
enable parallel processing of forward simulations on a
heterogeneous network of Unix workstations or
networked PCs that run under the Linux operating
system. This paper describes the PVM system and
its implementation into ITOUGH2. Examples are
discussed, demonstrating the use, efficiency, and limi-
tations of ITOUGH2-PVM.

 INTRODUCTION

Inverse modeling is a technique to estimate hydro-
geologic and thermal properties of a geothermal reser-
voir by automatically matching the output of a
numerical model to data collected in a laboratory
experiment, field test, or during production. The
method requires the development of an appropriate
conceptual and numerical forward model, which in
principle must be able to reproduce the observed data.
In geothermal applications, the prediction of the
system behavior usually calls for a rather sophisti-
cated numerical simulator, capable of modeling
coupled multiphase flow and transport processes in

heterogeneous, fractured-porous media. We use the
TOUGH2 simulator (Pruess, 1991) for this task.
The ITOUGH2 code (Finsterle, 1999abc) provides
inverse modeling capabilities for TOUGH2.
ITOUGH2 inversions are computationally intensive
because the forward problem—the prediction of state
variables using the TOUGH2 simulator—must be
solved many times to evaluate the misfit between the
model predictions and the observed data, and to
numerically calculate sensitivity coefficients.
ITOUGH2 has been successfully applied to the analy-
sis of laboratory experiments (see, for example,
Finsterle and Persoff, 1997). Preliminary attempts
have been undertaken to calibrate a geothermal reser-
voir model based on production data (White, 1995;
Finsterle et al., 1997; Bullivant and O’Sullivan,
1998). These studies concluded that the respective
forward models must be refined in order to reduce the
estimation bias as a result of an oversimplified
description of the geothermal system. Such a refine-
ment comes at the expense of increased computational
burden for each forward simulation, making inver-
sions using standard ITOUGH2 prohibitive.

Most of the forward runs required as part of an
ITOUGH2 inversion are independent from each other
and can therefore be performed in parallel. Since
obtaining the forward solutions consumes the bulk of
the CPU time used in an ITOUGH2 inversion, with
only a few percent of the time spent in the optimiza-
tion routines, processing individual TOUGH2 runs in
parallel has the potential to significantly reduce the
turn-around time of an ITOUGH2 inversion.
Message passing based on the Parallel Virtual
Machine system (PVM, Geist et al., 1994) has been
implemented into ITOUGH2 to enable parallelization
of TOUGH2 forward simulations on a heterogeneous
network of Unix workstations. We will discuss the
efficiency and limitations of ITOUGH2-PVM to

- 2 -

solve inverse problems for the characterization of
geothermal reservoirs.

 PARALLELIZATION CON CEPT

The main task of ITOUGH2 is to initiate multiple
TOUGH2 simulations with different parameter sets,
and to analyze each of the corresponding model
outputs at selected calibration points. A new,
improved parameter set is then proposed following a
certain strategy to minimize the objective function.
The objective function is a measure of misfit between
the model predictions and the measured data. The
degree to which an ITOUGH2 job can be parallelized
and the maximum attainable efficiency depends on the
minimization algorithm chosen, the number of
parameters to be estimated, and the number of proces-
sors available for parallelization. In order to select
the number of processors one would reasonably want
to engage, mprocs , and to estimate the potential

increase in efficiency, it is important to know which
tasks are parallelized in a given ITOUGH2-PVM
application. Table 1 lists the various analyses
performed by ITOUGH2 and the minimization algo-
rithms available, and indicates which forward simula-
tions can be run in parallel, and which ones must be
executed sequentially.

Table 1. Summary of Tasks Parallelized

Method Parallel Serial mprocs

Levenberg-
Marquardt

Jacobian
λ -steps

First run n

Gauss-Newton Jacobian First run n
Simplex
algorithm

Initial simplex
n-contraction
Final Jacobian

First run
1D-contraction
Reflection
Expansion

n

Grid search All runs - nruns

Sensitivity Jacobian First run n
FOSM Jacobian First run n
Monte Carlo All but first First run nMC

n Number of parameters to be estimated.
nruns Number of parameter sets to be evaluated.

nMC Number of Monte Carlo simulations.
FOSM First-order-second-moment uncertainty analysis.

It is obvious that the many forward runs performed
during a Monte Carlo study can be executed in paral-
lel with a maximum increase in efficiency due to
complete independence of the individual simulations.

Such an analysis is supported by ITOUGH2-PVM;
for an example, see Finsterle (1998).

We focus here on the Levenberg-Marquardt minimiza-
tion algorithm as the prime method used in
ITOUGH2 to solve the nonlinear least-squares prob-
lem. Levenberg-Marquardt is a gradient-based method
that requires evaluating sensitivity coefficients of the
calculated system response at the calibration points
with respect to each parameter to be estimated. In
ITOUGH2, the sensitivity coefficients are calculated
based on the perturbation method using the following
forward finite difference quotient:

Jij = ∂zi

∂pj

≈
zi (p; pj + δpj) − zi (p)

δpj

(1)

Here, zi is the calculated system response (e.g., flow

rate, temperature, tracer concentration) at calibration
point i , i = 1,..., m , and p is the parameter vector

of length n . The evaluation of the Jacobian matrix
J thus requires n + 1 TOUGH2 simulations: one run
is used to obtain the elements zi (p), followed by n
additional runs, each providing one column of the
Jacobian matrix. In each run, one of the parameters
is perturbed by a small amount δpj . These n runs

with the perturbed parameter sets are independent and
are thus parallelized in ITOUGH2-PVM. The maxi-
mum number of processors to participate in this
parallelized calculation is therefore n . The initial
forward run is not performed in parallel. Once the
Jacobian is evaluated, the Levenberg-Marquardt algo-
rithm proposes an update vector ∆p , which depends

on the Levenberg parameter λ as follows:

∆p = JTCzz
−1J + λD()−1

JTCzz
−1r (2)

Here, Czz is the observation covariance matrix, D is

an n × n diagonal matrix with elements
Dii = JTCzz

−1J()ii
, and r is the residual vector holding

the differences between the observed and predicted
system response. If the Levenberg parameter λ is
large, ∆p becomes a robust step parallel to the steep-

est-descent direction with a step length approaching
zero; if λ is zero, ∆p is identical to a Gauss-Newton

step with its quadratic convergence rate.

The following procedure is used in the original
ITOUGH2 implementation: if step ∆p is successful

(i.e., the objective function S = rTCzz
−1r becomes

smaller, that is, S(p + ∆p) < S(p)), λ is reduced by

- 3 -

the Marquardt parameter ν , and a new Jacobian
matrix is evaluated using Eq. (1); if the step is not
successful (i.e., leads to an increase in the objective
function), λ is increased by ν , and a new parameter
vector p(k +1) = p(k) + ∆p is calculated at iteration k

using Eq. (2), until a successful step is obtained.
In ITOUGH2-PVM, the approach taken is to initiate
nprocs forward runs simultaneously with various λ
values, where nprocs ≤ mprocs is the number of actu-

ally available child processes. The simulation that
yields the lowest objective function is identified. If
this run constitutes a successful step, optimization
continues; if it is an unsuccessful step, another nprocs

runs are performed with λ i = λ0 ⋅ ν i , i = 1,..., nprocs ,

where λ0 is the Levenberg parameter that yielded the

lowest value of the objective function in the previous
set of runs. The procedure is repeated until a success-
ful step can be taken or one of the convergence crite-
ria is met.

This approach is equivalent to performing a limited
search for the minimum along the line of possible
Levenberg-Marquardt steps with various values for λ
at each iteration. This may further accelerate the
Levenberg-Marquardt algorithm, as will be shown
below. However, testing multiple parameter steps in
parallel and picking the one with the lowest objective
function changes the solution path compared with
that taken by standard ITOUGH2. The user has there-
fore the choice to restrict parallelization to the evalua-
tion of the Jacobian matrix.

The parallel evaluation of the Jacobian has to be
completed first, before a new parameter vector can be
calculated using Eq. (2). This means that some proc-
essors may be idle until all columns of the Jacobian
are evaluated. The number of child processes nprocs

should be selected such that all processors are busy.
For example, if mprocs=n=8 and 7 processors of equiva-
lent speed and work load are available, it is reasonable
to select only nprocs=4 to avoid 6 processors being idle
for 50% of the time during the calculation of the
Jacobian. Similar restrictions apply to most algo-
rithms listed in Table 1 (Finsterle, 1998), with the
notable exception of grid search and Monte Carlo
simulations, in which no waiting times exist, i.e., all
available processors can be used simultaneously
regardless of their relative speed. Note that idle time
may not pose an inefficiency in itself because the
corresponding processor is available at that time for
other calculations.

 PVM IMPLEMENTATION

The parallelization concepts outlined in the previous
section are implemented into ITOUGH2 using the
Parallel Virtual Machine (PVM) system (Geist et al.,
1994). PVM is a freely available software package
that permits a heterogeneous collection of Unix
workstations networked together to be viewed as a
single parallel computer. PVM must be installed on
all hosts in the cluster, following the instructions in
Geist et al. (1994).

ITOUGH2-PVM is programmed following the “node-
only” model where multiple instances of the same
code are executed on all computers in the network.
One process—the parent process—takes over the non-
computational responsibilities such as spawning child
processes, initialization, distribution and collection of
data, and synchronization. In addition, the parent
process contributes to the computation itself (see
tasks listed in the third column of Table 1).

Figure 1 shows a simplified flow chart of ITOUGH2-
PVM. The source codes for the parent and child proc-
esses are identical. ITOUGH2-PVM first enrolls
itself into PVM, obtains its task identifier (TID), and
determines whether it is a parent or a child process.
The parent process reads the standard TOUGH2 and
ITOUGH2 input files. Hosts are added to the virtual
machine and child processes are spawned. Next, the
parent process sends the name of the working direc-
tory with the input files to the child processes.

As soon as the directory name is received by a child
process, it starts reading the TOUGH2 and ITOUGH2
input files, which were automatically copied to the
host by a Unix shell script. After input reading is
completed, the child process waits for the arrival of
data or parameter sets sent by the parent process. In
the meantime, the parent process performs the initial
forward run with the base-case parameter set (except
for grid search).

The results from the initial run are broadcast to all
hosts if performing either sensitivity analyses, first-
order-second-moment (FOSM) uncertainty propaga-
tion analyses, or Monte Carlo simulations. No such
step is required when performing optimization using
the Levenberg-Marquardt, Gauss-Newton, Downhill
Simplex, or Grid Search method. After the initial
run, the parameter set is updated according to the
selected algorithm. The updated parameter set is then
sent to one of the child processes. This procedure is
repeated until all child processors are busy.

- 4 -

ITOUGH2 Main Program

Determine TID

Parent

Read input files

Perform initial run
Send results from initial run

Stop child processes
Terminate

Child

Receive directory name

Read input files

Receive results from initial run

Receive parameter sets
Perform forward run

Send residuals

Update parameter set
Send parameter set
Receive residuals

Calculate objective function

Add hosts
Spawn tasks

Send directory name

Fig. 1. Simplified ITOUGH2-PVM flow chart.

The child processes perform one TOUGH2 forward
calculation with the parameter set they have received
from the parent process. After completion of the run,
they send the resulting residuals to the parent process.
They then wait for the next parameter set to arrive.
The parent process checks for incoming residual
vectors, and processes them according to the selected
method. If convergence is achieved or one of the
child processes signals that it was stopped, the parent
process stops all child processes before it continues
with the error analysis and terminates.

In ITOUGH2-PVM, the amount of data transferred
between the parent and child processes is relatively
small. The parent process sends the parameter vector
of length n , and the child process returns the residual
vector of length m . Both n and m are of order ten
to a few thousand, making efficient message passing
a minor issue even on a relatively slow network.

In addition to the parameter and residual vector, some
flags and iteration statistics are exchanged between the
parent and child processes. For example, the parent
process sends an integer indicating which column of
the Jacobian matrix is to be evaluated with the corre-
sponding perturbed parameter set. Upon completion
of the forward simulation, the child process returns
this flag, so that the Jacobian matrix can be properly
assembled by the parent process.

The parent process can be suspended for a short time
(typically 1 second) each time it checks for incoming
data from the child processes. This prevents the
parent process from spending time in a nonproductive
loop, freeing its CPU and allowing the user to assign
an additional child process on the computer running
the parent process. Some time is lost—on average
half a second per parallelized forward run—because
the parent process waits despite having received new
data that would be ready to be processed. For large
inverse problems, this loss is negligible.

 PERFORMANCE COMPARISON

General remarks and conclusions regarding the
performance of ITOUGH2-PVM in comparison with
standard ITOUGH2 are difficult to make, mainly
because the attainable efficiency improvement
strongly depends on the number, relative speed, and
workload of the individual computers in the worksta-
tion cluster. As briefly mentioned above, the choice
of the minimization algorithm and the solution path
taken during the optimization also affect the perform-
ance. An important factor is the number of available
hosts, nprocs, as related to mprocs, the maximum
number of tasks that can potentially be parallelized in
a given application (see last column in Table 1).
Furthermore, the decision whether the parent process
be assigned to the slowest or the fastest machine in
the cluster also depends on the application. Finally,
if one computer is significantly slower than all the
others, it may be better not to use it at all under
certain circumstances; in other cases, however, even a
very slow machine can make a contribution to the
overall performance of an inversion.

Some of the factors affecting the performance of
ITOUGH2-PVM, i.e., mprocs (Table 1), the general
characteristics of the minimization algorithm, and the
number of hosts available, are known at the time of
the run. Others, especially the workload on the
computers in the cluster, are difficult to predict. The
user has to decide (1) how many child processes to
initiate, and (2) whether to start the parent process on
a fast or a slow machine. These decisions are rela-
tively easy to make despite the complicated interac-
tion of factors affecting the overall performance. The
following performance tests show the speed
improvements attainable in a typical ITOUGH2-PVM
application. Additional examples, illustrating both
optimal and pathological cases, can be found in
Finsterle (1998).

- 5 -

Table 2 contains a list of Unix workstations used for
running the sample problems. Their relative speeds
as indicated in the last column were measured by
running a typical ITOUGH2 application on a single
processor, and normalizing the speed to the slowest
machine in the cluster. Recall that it is not the CPU
time but the turnaround time of a TOUGH2 forward
run that determines the effectiveness of a specific
workstation in the cluster.

Table 2. Computers in the Workstation Cluster

Host Architecture, Operating System Relative
Speed

1 DEC Alpha, DEC OSF-1 4.3
2 Silicon Graphics, IRIX 4.1
3 Sun SPARC, 14 CPUs, Solaris 2.9
4 CRAY Y-MP, 16 CPUs, UNICOS 2.4
5 Sun 4, SPARCstation, Solaris 1.8
6 IBM/RS6000, AIX 3.2 1.0

 SAMPLE PROBLEMS

The first example consists of running in parallel a
geothermal inverse problem previously described in
Finsterle et al. (1997). Six parameters representing
hydrological, thermal, and geometric properties of a
synthetic geothermal reservoir are estimated based on
pressure, temperature, liquid and vapor flow rate data
collected in the production, observation, and reinjec-
tion wells. The inverse modeling results are
discussed in detail in Finsterle et al. (1997) and
Finsterle (1999c).

The parameter estimation problem is solved using the
Levenberg-Marquardt algorithm, limiting the number
of child processes to mprocs=n=6 (see Table 1). Five
iterations are performed for this benchmark example,
requiring a total of 36 forward simulations, namely an
initial run, 5 evaluations of the Jacobian matrix at 6
runs each, plus 5 runs to test whether the Levenberg-
Marquardt-step was successful (no unsuccessful steps
are performed in the first 5 iterations). According to
Table 1, 6 of the 36 runs must be executed in
sequence, and 30 can be performed in parallel. The
parallel runs are expected to require about the same
time as spent by 30/nprocs forward runs. The theoreti-
cal minimum time needed to solve the problem using
ITOUGH2-PVM is therefore (6 + (30 / 6)) / 36 = 0.3
of the time required by standard ITOUGH2, assuming
that all processors are equally fast, that workload is
balanced, and that all forward calculations take the
same amount of time regardless of the parameter set
being tested. Furthermore, PVM overhead is assumed
to be negligible. In this example, the maximum

attainable speed improvement is modest because of
the relatively large fraction of runs that must be
performed in sequence. If 24 instead of 6 parameters
were to be estimated, the maximum achievable
reduction with 6 child processes would be
(6 + (120 / 6)) / 126 = 0.2, i.e., close to 1/nprocs.

We will look at different cluster configurations to
analyze the performance of ITOUGH2-PVM. Table 3
shows the number of child processes and hosts
selected for parallel execution, and the time reduction
as compared to a serial run on the fastest machine in
the respective cluster.

Table 3. Cluster Configuration and Time Reduction

Case nprocs
Hosts

(see Table 2)
Parent
Host

Time
Reduction

A 2 2, 3 2 0.64
B 2 2, 5 2 0.87
C 2 2, 5 5 1.08
D 3 1, 2, 3 1 0.51
E 6 1, 2, 3, 3, 3, 3 1 0.41
F 6 1, 2, 3, 3, 5, 6 1 0.82
G 6 4, 4, 4, 4, 4, 4 4 0.31

The first configuration (Case A) consists of only two
hosts. Even though Host #2 is almost 50% faster
than Host #3, each host takes over half of the runs
during the evaluation of the Jacobian, i.e., the parent
process and Host #2 remain idle for some time, wait-
ing for Host #3 to finish its task. A greater speed
difference (see Case B) or a smaller ratio nprocs/mprocs is
needed to allow the faster process to take over some
of the load of the slower process. Nevertheless, the
time reduction factor of 0.64 due to parallelization
with only two child processes can be considered satis-
factory.

In Case B, the second machine in the cluster is
significantly slower than the parent host. For each
Jacobian evaluation, Host #2 performs 4 forward
runs, whereas Host #5 completes 2 simulations, each
of which takes about 4 times as long as a single run
on the faster machine. As a result, a time saving of
only 13% is achieved.

Since the six serial runs performed by the parent
process will consume a significant portion of the
total time, it is reasonable to select the fastest
machine in the cluster as the parent host, as was done
in Cases A and B. In Case C, the parent process was
assigned to the slow machine, which in fact makes
the turnaround time of the inversion longer as
compared to a serial run performed on the faster

- 6 -

machine. The negative impact of selecting the wrong
parent host decreases as the number of serial runs
becomes small relative to the total number of forward
simulations.

Cases D and E show the performance with 3 and 6
child processes, reducing the time to 51 and 41%,
respectively. This performance is reasonably close to
the maximum attainable efficiency with a time
requirement of 30% of the serial run. Recall, that the
time reduction is measured against the fastest
computer in the cluster, and that waiting time is
included as the 6 runs performed in parallel at each
iteration exhibit different turnaround times. While
Case E realizes the shortest time in this example, the
overall performance gain is poor given the fact that
resources from six computers are linked together.
This is a direct result of the test case characteristics
with its relatively few parameters, the significant frac-
tion of serial runs, and a large ratio nprocs/mprocs, which
makes the slowest machine become the limiting
factor. This last point is illustrated in Case F, which
performs almost as poorly as the pathologic Case B
despite the larger number of hosts. The two-host
configuration of Case A is certainly preferable, and
may be considered the most efficient solution for this
example.

Case G demonstrates that if identical processors are
used, for example, by running ITOUGH2-PVM on a
multiprocessor machine such as the CRAY Y-MP
C90, the performance approaches the theoretical
maximum efficiency.

In the final example, two parallelized inversions are
performed, both using the Levenberg-Marquardt
minimization algorithm. In the first run, only the
evaluation of the Jacobian matrix is parallelized. In
the second run, testing of new parameter sets is also
performed in parallel using nprocs different values of
the Levenberg parameter λ (see discussion of Eq. 2).
As mentioned above, this amounts to determining the
minimum of the objective function calculated at nprocs

points along the curve given by all possible Leven-
berg-Marquardt steps at each iteration.

Figure 2 shows how the objective function is reduced
by the Levenberg-Marquardt algorithm. Both runs
start at the same initial value. After two iterations,
the objective function is reduced to 56% of the initial
value if using standard ITOUGH2 or a version in
which only the Jacobian is evaluated in parallel.
Parallel testing of nprocs=4 steps with different Leven-
berg parameters leads to a much faster decline of the
objective function to 8%, and the minimum is nearly

identified after 3 iterations, whereas it takes 6 itera-
tions for standard ITOUGH2 to reach a similarly low
level. In this example, both approaches converge to
the same best-estimate parameter set despite the fact
that different solution paths are taken.

Figure 3 shows how the Levenberg parameter is
updated between iterations for the two methods. A
value of 10 was chosen for the Marquardt parameter,
the factor by which the Levenberg parameter is mul-
tiplied (in case of an unsuccessful step) or divided (in
case of a successful step).

0 1 2 3 4 5 6
Iteration

0

10000

20000

30000

40000

50000

60000

O
bj

ec
tiv

e
F

un
ct

io
n

Parallelization of Jacobian only

Parallelization of Jacobian and
Levenberg parameter stepping

Fig. 2. Reduction of objective function with and
without parallelization of Levenberg
stepping.

0 1 2 3 4 5 6
Iteration

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Le
ve

nb
er

g
P

ar
am

et
er

Parallelization of Jacobian only

Parallelization of Jacobian and
Levenberg parameter stepping

6
un

su
cc

es
sf

ul
st

ep
s

2
un

su
cc

se
ss

fu
l s

te
ps

1
un

su
cc

ss
sf

ul
st

ep

Fig. 3. Value of Levenberg parameter at each
iteration with and without parallelization
of Levenberg stepping.

- 7 -

In standard ITOUGH2, the Levenberg parameter can
only be reduced by one order of magnitude between
iterations. If an unsuccessful step is encountered,
new parameter sets calculated with increasing Leven-
berg parameters are tested sequentially. For example,
6 trial runs were performed between iterations 5 and
6, before a parameter set was created that successfully
reduced the objective function. In the parallelized
version, the Levenberg parameter can be reduced by
more than one order of magnitude between successful
iterations (see, for example, between iterations 2 and
3), and testing of smaller, more robust steps with
increased λ ’s is more efficient (see, for example,
between iterations 3 and 4).

Note that simultaneous testing of nprocs parameter sets
is likely to take more time than testing only one set
as in standard ITOUGH2 because the slowest machine
in the cluster is the limiting factor. Moreover, differ-
ent parameter sets require different execution times
due to different time-stepping and convergence charac-
teristics of the Newton-Raphson iterations and the
iterative linear equation solver. As a result, each
ITOUGH2 iteration may take more time in the paral-
lel version as long as successful steps are taken.
However, unsuccessful steps are less frequent, and if
multiple unsuccessful steps are encountered, paralleli-
zation has again an advantage over testing of parame-
ter sets with sequentially increased Levenberg parame-
ters.

 SUMMARY AND CONCLUSIONS

A version of the inverse code ITOUGH2 has been
developed that allows for parallel execution of inde-
pendent TOUGH2 forward simulations on a heteroge-
neous cluster of Unix workstations or networked PCs
running under the Linux operating system. The
parallelization strategy depends on the minimization
algorithm used. The performance of ITOUGH2-PVM
as compared with standard, sequential execution of
multiple forward runs strongly depends on the selected
optimization method, the number of processors avail-
able, the ratio of the number of processors available
to the maximum possible number of parallel proc-
esses, the relative speed of the machines in the clus-
ter, the selection of the parent process, the work load
on each machine, and the efficiency of the network.

Some of the advantages of choosing PVM over other,
potentially more efficient message passing interfaces
is that PVM is freely available, and its use is not
restricted to high-performance computers, which often
have limited access. However, multiprocessor

machines can be included in the cluster and viewed as
multiple hosts. ITOUGH2-PVM is easy to install
and to use, and it is highly portable across platforms.
Because parallelization in ITOUGH2-PVM occurs on
a high level, modifications made to any of the
TOUGH2 modules do not usually require any adapta-
tion to ITOUGH2-PVM. The PVM code is fully
integrated into ITOUGH2, i.e., the same source code
can be used for sequential and parallel applications.

Parallelizing the time-consuming forward runs in
ITOUGH2 provides the needed efficiency to deal with
challenging inverse problems. It enables one to use a
more sophisticated and more accurate forward model
in an inversion, reducing the impact of systematic
modeling errors, which strongly affect the outcome of
an inversion. ITOUGH2-PVM is a significant step
towards making automatic calibration of large-scale
reservoir models part of standard geothermal engineer-
ing practice.

For more information about ITOUGH2, visit the
Web Site at http://www-esd.lbl.gov/ITOUGH2.

 ACKNOWLEDGMENT

We would like to thank C. Oldenburg and T. Xu for a
careful review of the manuscript. This work was
supported, in part, by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of
Geothermal Technologies, of the U.S. Department of
Energy, under Contract No. DE-AC03-76SF00098.

 REFERENCES

Bullivant, D. P. and M. J. O’Sullivan (1998),
“Inverse Modelling of the Wairakei Geothermal
Field,” Proceedings, TOUGH Workshop ‘98, Report-
41995, Lawrence Berkeley National Laboratory,
Berkeley, Calif., 53–58.

Finsterle, S. (1998), Parallelization of ITOUGH2
Using PVM, Report LBNL-42261, Lawrence
Berkeley National Laboratory, Berkeley, Calif.

Finsterle, S. (1999a), ITOUGH2 User’s Guide,
Report LBNL-40040, Lawrence Berkeley National
Laboratory, Berkeley, Calif.

Finsterle, S. (1999b), ITOUGH2 Command Refer-
ence, Report LBNL-40041 (updated reprint),
Lawrence Berkeley National Laboratory, Berkeley,
Calif.

- 8 -

Finsterle, S. (1999c), ITOUGH2 Sample Problems,
Report LBNL-40042 (updated reprint), Lawrence
Berkeley National Laboratory, Berkeley, Calif.

Finsterle, S. and P. Persoff (1997), “Determining
Permeability of Tight Rock Samples Using Inverse
Modeling,” Water Resour. Res., (33)8, 1803–1811.

Finsterle, S., K. Pruess, D. P. Bullivant, and M. J.
O’Sullivan (1997), “Application of Inverse Modeling
to Geothermal Reservoir Simulation”, Proceedings,
Twenty-Second Workshop on Geothermal Reservoir
Engineering, Stanford, Calif., January 27–29.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek, and V. Sunderam (1994), PVM: Parallel
Virtual Machine—A User’s Guide and Tutorial for
Networked Parallel Computing, MIT Press,
Cambridge, MA.

Pruess, K. (1991), TOUGH2—A General Purpose
Numerical Simulator for Multiphase Fluid and Heat
Flow, Report LBL-29400, Lawrence Berkeley
National Laboratory, Berkeley, Calif.

White, S. P. (1995), “Inverse Modeling of the
Kawerau Geothermal Reservoir, NZ”, Proceedings,
17th New Zealand Geothermal Workshop, Auckland,
New Zealand, 211–216.

